
tis

TIS Firewall Toolkit

Overview

About The Toolkit and This Documentation

The TIS Firewall Toolkit (hereafter referred to as “the toolkit”) is a set of programs
and configuration practices designed to facilitate the building of network firewalls.
Components of the toolkit, while designed to work together, can be used in isolation or
can be combined with other firewall components. The toolkit software is designed to run
on UNIX systems using TCP/IP with a Berkeley-style “socket” interface.

Throughout this documentation, a distinction is made between “configuration
practices” and software. A configuration practice is a specific way of configuring existing
system software, while a software component of the toolkit is a separate program which
may replace or enhance existing system software. Thus, when the documentation refers to
the configuration practice applicable to configuring some system daemon in a secure
manner, it is assumed that the base operating system in question has existing support for
that software, and that it is capable of being configured. The exact details of how to
configure various system utilities differ from vendor implementation to vendor
implementation and are outside of the scope of this document. In general, most UNIX
systems with BSD-style networking will support all the functionality and services referred
to herein.

Installing the toolkit assumes practical experience with UNIX systems
administration and TCP/IP networking. At a minimum, a firewall administrator should be
familiar with installing software and maintaining a running UNIX system. Since
components of the toolkit are released in source code form, familiarity with building
packages using make is required. The toolkit does not try to provide a “turnkey” network
firewall, since every installation's requirements, network topology, available hardware, and
administrative practices are different. Depending on how the toolkit is configured,
different levels of security can be achieved. The most rigorous security configurations are
not for everyone, while for others anything less will not suffice. It is the responsibility of
the firewall installer to understand the security policy of the network that is to be
protected1, to understand what constitutes acceptable and unacceptable risks, and to

1 This may entail helping to develop one, if none exists.

Version Dated: 06/30/94

rationalize them with the requirements of the end users. Performing this analysis is the
hardest task in implementing any security system. The toolkit, unfortunately, cannot do it
for you; it can only provide the components from which to assemble a solution.

The toolkit consists of three basic components:
• Design Philosophy
• Configuration Practices / Verification Strategies
• Software Tools

An individual considering using the toolkit may use any or none of these
components, as they see fit.

Design Philosophy

The TIS Firewall Toolkit is designed to be verified for correctness as a whole or at a
component level. This appears to be a fairly novel approach for a network firewall, as
many existing firewall systems rely on software that is “known to be good” or that is
considered trustworthy because it has been used extensively for a long time. One problem
with the “known to be good” approach is that historically it hasn't been very reliable.
Certain software components such as mailers are frequently exploited in break-ins, no
matter how carefully they are maintained. Problem programs are often complex pieces of
software, often implemented in several tens of thousands of lines of code, which require
system privileges in order to operate. As a step towards addressing this, the firewall
toolkit is designed to operate along the basic design principles that:

• Even if there is a bug in the implementation of a network service, it should not be
able to compromise the system.

• Hosts on the untrusted network should not be able to connect directly to network
services that are running with privileges.

• Network services should be implemented with a minimum of features and
complexity. The source code should be simple enough to be reviewed thoroughly
and quickly.

• There should be a reasonable way of testing the correctness of the system.

These design principles can be effectively applied to any network firewall
architecture.

Configuration Practices

Risk Analysis

Before beginning to design a firewall, it is important to have a clear idea of what the
resulting firewall will provide protection against, how it will comply with existing
corporate or organizational standards, and how it fits into the overall security architecture
of the network. Once the security goals of the firewall have been enumerated, user

Trusted Information Systems, Inc. 2

requirements and business practices are considered, and (it is hoped) a satisfactory design
objective can be derived.

Perimeter Defense

One important consideration in setting up a firewall is that it is, first and foremost, a
perimeter defense. Firewalls do not provide any protection once an attacker has gotten
past them. Having a firewall is analogous to a large steel door as the front door to one's
building — it provides excellent protection against frontal attack. To extend the analogy,
if one's security policy is such that a steel front door is required, one should also have steel
shutters on the windows, and one should not have connecting doors to the neighboring
buildings unless they have steel doors and shutters as well. In practical networking terms,
this equates to basic measures such as securing modem pools with passwords, publishing
security standards that clearly inform users of their responsibilities, and examining any
other networks that share (are “inside”) the security perimeter. A single user who decides
to purchase a serial line network connection (SLIP) to an Internet service provider can
unintentionally completely circumvent a very expensive security system. Having a firewall
that uses strong authentication mechanisms such as one-time passwords or cryptographic
calculators while having a modem pool that requires no passwords at all indicates an
inconsistent security practice. When establishing a perimeter defense, the administrator
must first perform a risk analysis, and then make sure that all the entry points into the
network are protected equally strongly. If two networks are being connected, and will
share a common security perimeter, then both networks should be protected to the same
degree, with a consistently enforced shared security policy.

Basic Firewall Architecture

When constructing a network firewall, the first configuration decision that must be
made is which of the two security models to follow. The two options are:

• That which is not expressly permitted is prohibited
• That which is not expressly prohibited is permitted

When implementing a firewall following the first approach, one identifies the
services that will be provided, addresses the security of those services, blocks all other
services and traffic off, and then enables the selected services only once they have been
tested and are believed to be secure. In the second approach, one identifies all the services
that are believed to present risks and disables or secures them. The first approach is more
conservative, accepting that “what we don't know can hurt us,” but tends to impose limits
on the types and number of services that can be provided through the firewall. The second
approach is more versatile, since more services are supported, but runs the risk of
degenerating into an arms-race between the administrator and system crackers. Another
important consideration is the size of the prospective user community on the protected
network. As the protected network grows larger and is harder to monitor completely, it
becomes increasingly difficult for an administrator to verify that members of the user

Trusted Information Systems, Inc. 3

community are not themselves providing services over the network that get around the
security of the firewall. An example of such a problem would be a user who decides to
provide FTP service on a different port from the standard FTP port (port 23) because the
FTP service port is blocked by the firewall but the alternate port is not. Eventually the
firewall will need to protect the network from attacks (intentional or accidental) from the
inside as well as outside.

The toolkit is designed to support users who want to implement firewalls based on
the “that which is not expressly permitted is denied” approach. Generally, when building
such a firewall, it is important to have good tools to provide access control and secure
service for the few services that are provided. The software components of the toolkit
implement security for the most commonly used network services.

Archetypal Firewalls

There are several archetypal firewall configurations that the toolkit is designed to
support. For a more in-depth look at various basic forms of firewalls, see [1]. The primary
types of firewalls the toolkit is designed to support are dual-homed gateways, screened
host gateways, and screened subnet gateways. In these firewalls, the important common
factor is a host (a “bastion host”) which acts as an application forwarder, traffic logger,
and service provider. Maintaining security on the bastion host is of paramount importance,
and this is where most of the effort of setting up the firewall is focused.

Figure 1: A dual-homed gateway

Internet
Protected
Network

Routing Disabled

Bastion Host
Running firewall software

In the dual-homed gateway configuration, the toolkit software is installed on a host
with two network interfaces. The toolkit software provides proxy services for common
applications like FTP and TELNET, and security for SMTP mail. Since the bastion host is
a security-critical network strong point, it is important that the configuration of the
software on that system be as secure as possible.

Dual-homed gateways are an appealing firewall, since they are simple to implement,
require a minimum of hardware, and can be verified easily. Most Berkeley-based UNIX
implementations have a kernel variable _ipforwarding, which indicates to the operating
system that it should not route traffic between networks, even if it is connected to two
(which would normally cause the system to act as a gateway router). By completely
disabling routing, the administrator can have a high degree of confidence that any traffic

Trusted Information Systems, Inc. 4

between the protected network and the untrusted network is somehow passing through an
application that is running on the firewall. Since there is no traffic transferred directly
between the internal network and the untrusted network, it is not necessary to show any
routes to the private network over the untrusted network. This effectively renders the
protected network “invisible” to any systems except the bastion host. The only
disadvantage of this type of firewall is that it is implicitly a “That which is not expressly
permitted is prohibited” firewall — and it's impossible to weaken the firewall's security to
let a service through even if one later decides one wants to. All services must be supported
via proxies on the firewall.

Figure 2: A Screened Host Gateway

Internet
Protected
Network

Bastion Host
Running firewall software

Router
w/ Packet Screening

Permitted

Blocked

A screened host gateway relies on a router with some form of packet screening
capability to block off access between the protected network and the untrusted network.
A single host is identified as a bastion host, and traffic is permitted only to that host. The
software suite that is run on the bastion host is similar to a dual-homed gateway; the
system must be as secure as possible, as it is the focal point for attack on the network.
Screened host gateways are a very flexible solution, since they offer the opportunity to
selectively permit traffic through the screening router for applications that are considered
trustworthy, or between mutually trusted networks.

The disadvantage of this configuration is that there are now two security critical
systems to be aware of: the bastion host and the router. If the router has access control
lists that permit certain services through, it becomes an additional point of complexity to
concern the firewall administrator. Verifying the correctness of a screened host firewall is
a little more difficult, increasing quickly in difficulty as the number of services permitted
through the router grows. Screened host firewalls also introduce management risks —
because the capability exists to open “holes” in the firewall for special applications or
influential users, the firewall administrator must be careful to resist pressure to constantly
be modifying the screening rules in the router.

Trusted Information Systems, Inc. 5

Figure 3: A Screened Subnet Gateway

Router
w/ Packet Screening

Internet
Protected
Network

Bastion Host
Running firewall software

Router
w/ Packet Screening

In a screened subnet firewall, a small isolated network is placed between the trusted
network and the untrusted network. Access to this network is protected by screening rules
in routers, which restrict traffic so that hosts on the screened subnet are the only systems
reachable by both networks. Conceptually, this is the dual-homed gateway approach,
applied to an entire network. The main utility of this approach is that it permits multiple
hosts to exist on the “outside” network (sometimes referred to as the “demilitarized
zone”). An additional advantage to screened host subnets is that the firewall administrator
can configure network routing, so as to not advertise routes to the private network from
the Internet, and to not advertise routes to the Internet internally. This is a powerful means
of protecting a large private network, since it makes it very difficult for an outsider to
direct traffic at the hidden private network. If the routing is blocked, then, like a dual-
homed gateway, all traffic must pass through an application on the bastion host.

Firewalls in a Partitioned Network

Not every network is a single, isolated, network attached to an untrusted network.
As use of large-scale networks for business continues to increase, many businesses are
forming business partnerships and transmitting corporate sensitive information over public
networks. A single corporation may wish to establish a common security perimeter among
multiple facilities connected over a public backbone. In this type of situation, a firewall can
be effectively combined with network-level encryption hardware (or software) to produce
a virtual network, with a common security perimeter.

Trusted Information Systems, Inc. 6

Figure 4: Common Security Perimeters Over a Public WAN

Internet
Facility #1

Bastion Host
Running firewall software

Facility #2

Encryption
Unit

Encryption
Unit

Encrypted Traffic

Other
Internet

Sites

Router
w/ Packet Screening

Unencrypted Traffic

This figure illustrates how a company might establish a common security perimeter
between two facilities, over a public wide area network. In the illustration, the encryption
is separate from the router, but need not be, if integrated encrypting routers are available.
Currently, there are several products that act as encrypting bridges at a frame level; i.e.,
they examine the source and destination address of all packets arriving on one interface,
and retransmits the packet out the other. If the encrypting bridge/router is configured to
encrypt traffic to a specific network, the packet data is encrypted, and a new checksum is
inserted in the header. Once the packet is received at the other side, the peer encrypting
bridge/router determines that it is from a network with which the router is encrypting
traffic, and decrypts the packet, patches the checksum, and retransmits it.

Someone intercepting traffic between the two encrypting networks would see only
useless cipher text. An additional benefit of this approach is that it protects against
attempts to inject traffic by spoofing the source network address. Unless attackers know
the cipher key that is in use, their packets will be encrypted into junk when they go
through the encrypting bridge/router. If the encrypting bridge/router gets traffic for a
network with which it is not to encrypt, traffic is transmitted normally. In this manner, a
firewall can be configured, with encrypted “tunnels” to other networks. For example, a
company could safely share files via NFS or use weakly authenticated network login
programs, like rlogin, in safety over their encrypted link, and still have a strong firewall
protecting access between the corporate perimeter and the rest of the world. A similar
approach could be employed between two companies that wished to establish a business
connection for proprietary information, in which traffic between the firewall bastion host
on one corporate network and the firewall bastion host on the other corporate network
was automatically encrypted.

Strong Authentication

Firewalls can be configured to be impermeable from the “outside” network, but
sometimes it is important to permit users to access systems on the protected network from
the untrusted network. Travelling staff, staff at conferences with network access, or
customers may all need to log in over untrusted network links. In these situations, normal

Trusted Information Systems, Inc. 7

password protection is insufficient, since most applications that use passwords pass them
in the clear over the network, where they can be compromised by anyone with a packet-
sniffer or equivalent software. In this type of hostile environment, one-time passwords or
challenge/response calculators should be used. One-time passwords are passwords that are
generated by a user prior to leaving a facility, and which are used sequentially in an
agreed-upon manner with the system. If the password is compromised, it is not a security
threat, since the password is never re-used. Challenge/response calculators use a secret
shared between the system and a portable calculator or smart card to generate an
encryption of a random challenge each time the user attempts to log in. Since the only
person who could generate the correct encrypted response to the challenge is the user with
the specific calculator, the system can authenticate the user without having to exchange a
cleartext password.

The toolkit supports one-time passwords or challenge/response systems by including
support in the proxy servers for a simple authentication protocol. This authentication
protocol is served by a “middleware” authentication server that can embed support for
multiple forms of authentication systems simultaneously. The proxy servers can be
configured to require authentication (or not) based on the origin or destination of the
service request. In this manner, the toolkit provides very flexible configuration of
authentication. An administrator typically configures the proxies to require no
authentication on outgoing requests, but, perhaps, to require strong authentication for
incoming service requests.

Software Components

The following sections list the software components of the toolkit, briefly describing
the purpose of each component. These components are all application-level programs, that
replace or add to existing software. In some cases, there are other publicly available tools
with similar functionality, which can be used instead of or in addition to the firewall toolkit
components.

Smap: SMTP Service

SMTP is implemented using a pair of software tools called smap and smapd.
Generally, SMTP mail poses a threat to the system, since mailers run with systems-level
permissions in order to deliver mail to users' mailboxes. Smap and smapd address this
concern by isolating the mailer so that it runs in a restricted directory via chroot, as an
unprivileged user. Smap and smapd do not address any issues relating to mail spoofing or
denial of service attacks via mail. Smap's primary purpose is to insulate a notoriously
buggy program which has been implicated in many break-ins in the past. The bulk of the
real mail-processing work is performed normally by sendmail, requiring no modifications
to sendmail or its configuration file. When a remote system connects to the SMTP port,
the operating system invokes smap, which immediately chroots2 to its restricted directory

2 The chroot system call is a means within UNIX of irrevocably isolating a running process within a sub-
branch of the file system.

Trusted Information Systems, Inc. 8

and sets its user-id to an unprivileged one. Since smap requires no system support files,
the restricted directory can contain no files other than those that smap creates. There is no
risk of smap being tricked into modifying system files (because it is chrooted), and there is
no way an interactive session can be obtained via smap (there are no executables in the
smap spool directory). Smap's sole purpose is to talk SMTP with other systems, gather
mail messages, write them to disk, generate log entries, and exit. The second part of mail
processing does not run chrooted to a restricted directory, but still does not require
permissions; smapd is responsible for scanning the smap spool directory periodically and
submitting the queued messages to sendmail for final delivery. Note that if sendmail is
configured normally and smapd is running with the uucp user-id mail can be delivered
normally without requiring smapd to run with enhanced permissions. When smapd delivers
a message, it clears the file from the spool area.

In this manner, the functionality of sendmail is preserved, while preventing an
arbitrary user on the network from communicating directly with sendmail. Analyzing the
sendmail program's 20,000 lines of code for bugs is a sizable task when compared to
smap's 700 lines.

Netacl: TELNET Service, Finger, and Network Access Control Lists

Inetd contains no provision for access control; i.e., it will permit any system on the
network to connect to a service that is listed in inetd.conf. There are several situations
where general purpose access control on network services is desirable, and tools to
implement such control have been available on the Internet for several years. Netacl is the
toolkit component which manages network access control. It permits arbitrary access
control specification for each network service based on the client host's network address,
and the service requested. Thus, one client (specified either by IP-address or host name)
might invoke a different version of telnetd when it connects to the TELNET service port
on the firewall.

UDP access control is not provided by netacl. Many “tcp wrappers” available on the
Internet (such as Wietse Venema's log_tcp) support access control of a sort for UDP
based services. Reliably authenticating the origin of a UDP packet is impossible with the
current technology, so netacl does not attempt to address this issue: security for UDP-
based services is provided by the draconian means of shutting all security-related UDP-
based services off.

Many services that are disabled by default, such as finger, can be selectively enabled
for hosts within the private network. Netacl also plays an important role in the
configuration practices employed for other services such as anonymous FTP, since it can
be configured to perform a chroot prior to invoking a given service. This functionality
provides a great deal of flexibility for specifying services that should run under isolation.
For example, a finger proxy service can be implemented by configuring netacl to invoke
fingerd as an unprivileged user, chrooted to an empty directory. Prior to fingerd's

Trusted Information Systems, Inc. 9

execution, it will be placed in isolation; if there is a security hole in fingerd,3 it cannot be
effectively exploited, since no file system or executables will be available to the attacker.

In the usual firewall configuration, netacl will be used to block all but a few hosts
from being able to attempt to login to the firewall via either telnet or rlogin, as well as
being used to possibly block access from aggressor sites in the event of an attack.

The security of netacl relies on IP-addresses and/or host names. For security-critical
applications control, IP-addresses should be used, to avoid use of the Domain Name
System (DNS) to spoof the source of the connection. Netacl does not protect against
attacks using spoofing of IP-addresses via source routing or other means; if such attacks
are a concern, a router that is capable of screening source routed packets should be
employed. The security of the internet daemon inetd is assumed in this configuration.
Netacl is designed to be easy to examine for correctness, consisting of 240 lines of C code
(including comments); it is a very simple program. Care should be taken in configuring it.

Ftp-Gw: A Proxy Server for FTP

In order to permit file transfer through the firewall without risking compromising the
firewall's security an FTP proxy server is provided. The proxy server supports access
control based on IP-address and/or host name, and supports secondary access control
permitting any FTP command to be selectively blocked or logged as it is transmitted.
Destinations for service can also be selectively permitted or blocked. All connections and
bytes transferred are logged.

The ftp-gw poses no threat to the security of the firewall system itself, since it runs
chrooted to an empty directory and does no file I/O other than reading its configuration
file. Since emulating the FTP protocol is somewhat complex, ftp-gw is approximately
1,300 lines of source code and is slightly less easy to verify by examination than other
components of the toolkit. The FTP gateway is only intended to provide access to FTP
services, and does not address issues of who is authorized (or not) to export files. Support
for strong user authentication can be attached to the gateway, to require user
authentication prior to exporting or importing files. The FTP gateway is a useful tool,
which should be implemented in accordance with a consistent site data security policy4.
The toolkit includes source code for a modified version of the FTP daemon which permits
an administrator to provide both FTP service and FTP proxy service on the same system.

Telnet-Gw: A Proxy Server for TELNET

In order to permit remote terminal access through the firewall, without risking
compromising the firewall's security, a TELNET proxy server is provided. The proxy
server supports access control based on IP-address and/or host name, and supports
secondary access control permitting any destination to be selectively blocked. All

3 The Morris internet worm took advantage of a loophole in fingerd to compromise some systems.
4 For example, it is fruitless to mandate blocking outgoing export of files through the FTP gateway when
electronic mail is permitted.

Trusted Information Systems, Inc. 10

connections and bytes transferred are logged. Once users have connected to telnet-gw,
they are presented with a simple menu of options to assist in connecting to a remote host.

The telnet-gw poses no threat to the security of the firewall system itself, since it
runs without permissions, chrooted to a restricted directory. The source code for telnet-
gw is easily reviewed, consisting of approximately 1,000 lines of code. The telnet-gw
menu processing is entirely in-memory and no subshells or programs are invoked; no local
file I/O is performed other than reading the configuration file. Thus, telnet-gw cannot
provide access to an interactive login on the firewall system.

Rlogin-Gw: A Proxy Server for Rlogin

Terminal access via the BSD rlogin protocol may be supported via the rlogin proxy.
The rlogin proxy supports permissions checking and access control in the same manner as
the TELNET gateway. Rlogin clients can specify a remote system as part of the initial
connection to the proxy, eliminating the need for user interaction if authentication is not
required.

Plug-Gw: A TCP Plug-Board Connection Server

Certain services such as Usenet news are often provided through a firewall. In such
situations, the administrator has the choice of either running the service on the firewall
itself, or installing a proxy server. Since running news directly on the firewall exposes the
system to any bugs in the news software, it is safer to use a proxy to gateway the service
onto a “safe” system on the protected network. Plug-gw is a general purpose proxy that
“plugs” two services together transparently. Its primary purpose is for supporting Usenet
news, but it can be employed as a general-purpose proxy if desired.

In general, plug-gw is installed on the firewall, so that when a remote system
connects to the NNTP5 port it automatically reconnects to a designated news server on
the inside network. If the news server on the inside network connects to the news port on
the firewall, plug-gw automatically reconnects to a designated news server on the outside
network. This reciprocal connection is based on the IP-address of the originally
connecting host. Once plug-gw is connected, it simply copies data until one side or the
other shuts down the connection, at which point it exits. Plug-gw is configurable to
selectively permit or deny connections based on IP-address/host name. All connections
and bytes transferred are logged.

Plug-gw can act as a general portal between the protected network and the outside
network; therefore, it should be used sparingly and with caution. Since it acts only as a
data pipe, it performs no local disk I/O, and invokes no subshells or processes. In the
general case of use for news, plug-gw provides excellent security, since it permits an
outside system bi-directional communication with a single port on an internal news server,

5 NNTP: Network News Transfer Protocol, a TCP-based protocol for transmitting Usenet news articles in
bulk.

Trusted Information Systems, Inc. 11

while still blocking all other traffic. In a sense, plug-gw is similar to adding a configuration
rule to a router that permits traffic only between two systems on a single port, except that
it logs all transactions.

Optional Components and Configuration Practices

The following components and configuration practices are optional.

Authd: Network Authentication Service

The network authentication server authd provides a generic authentication service
for network applications. Its use is optional, required only if the firewall proxies ftp-gw
and tn-gw are configured to require authentication. Authd's purpose is to provide a
generic interface to multiple forms of authentication. For large organizations, where
several forms of authentication challenge/response cards are in use, authd can link them all
together to use a single database. A simple administrative shell is included that permits the
authentication database to be manipulated over a network, with optional support for
encryption of authentication transactions. The authd database supports a basic form of
group management; one or more users can be identified as the administrator of a group of
users, and can add, delete, enable, or disable users within that group. Authd internally
maintains information about the last time a user authenticated to the server, how many
failed attempts have been made, and can automatically disable accounts that have multiple
failures. Extensive logs are maintained of all authd transactions. Authd is intended to run
on a secured host, such as the bastion host, since its database is a possible point of attack.

Telnetd: Network Login Service to the Firewall

For administrative reasons it is sometimes desirable that a systems manager be able
to login to the firewall itself to perform maintenance. Optionally, the TELNET server
process telnetd can be configured to run on the firewall, for this purpose. The standard
configuration practice is that the TELNET proxy server telnet-gw runs on the TELNET
TCP service port (port 23) and administrators must login on the console. Optionally,
telnetd can be configured in inetd.conf to provide access. It is recommended as a
configuration practice that access to telnetd be protected using netacl, with a limited
number of hosts having permission to connect to the service. Additionally, it is a
recommended configuration practice that the login procedure on the firewall require a
one-time or changing password with challenge/response for authentication.

Login: User Authentication

The toolkit includes a login program named login-sh for user authentication. This
version contains support for a variety of authentication protocols using token
authenticators such as Security Dynamics' SecurID, Digital Pathways' SecureNet Key, and
the Racal Watchword. The login program replaces the user's initial shell, and requires
them to authenticate prior to invoking their normal command interpreter. This approach
provides good login security without requiring modifications to the vendor-provided login

Trusted Information Systems, Inc. 12

program, and can be activated on a per-user basis. The toolkit version of login provides
enhanced logging over the standard version, logging successful logins as well as failed
ones.

Ftpd: Anonymous FTP Service

The toolkit provides a configuration practice for the FTP service. Traditionally, ftpd
permits users to login as “anonymous” or “ftp” to gain guest access to the system. In this
case, the user is then chrooted into the FTP account's home directory, where presumably
access is controlled using standard configuration practices for installing anonymous FTP
(see ftpd for details). The toolkit's configuration practice takes advantage of netacl to
determine if the FTP request is from a system on the “outside” network, and if it is, ftpd is
invoked after having already been chrooted to a restricted area. This is to obviate any
bugs that may be in the implementation of ftpd6 and is consistent with the overall
configuration practice of preventing any system on an untrusted network from being able
to directly connect to a privileged application running in an unrestricted file system.
Despite the security this practice provides, due care must be spent in configuring ftpd
properly, though combining ftpd with netacl does not require any changes from the
standard way of installing anonymous FTP that is documented in the ftpd manual pages.

Syslogd: System Logging

The firewall toolkit includes a version of the system logging daemon which permits
specification of regular expression search patterns in its configuration file, and the ability
to invoke specified programs when a specified log entry is received. This permits real-time
scanning of system logs, and real-time alerts. The invocation of programs based on log
entries and patterns is a powerful tool for permitting an administrator to trigger a
shutdown or redirect messages to a beeper or electronic mail if a security-critical event is
detected.

6 One popular ftpd implementation that is in widespread use turned out to have a security hole that
permitted anyone on the network root access to the root file system of the host running it.

Trusted Information Systems, Inc. 13

For Further Reading
[1] Marcus J. Ranum, “Thinking About Firewalls,” proceedings of the Second World Conference on

Systems Management and Security (SANSII), 1993 Available for FTP from ftp.tis.com:
/pub/firewalls/firewall.ps.Z

[2] Bill Cheswick, “The Design of a Secure Internet Gateway,” USENIX proceedings. Available for FTP
from research.att.com: /dist/secure_internet_gateway.ps

[3] Cliff Stoll, “The Cuckoo's Egg”

[4] Smoot Carl-Mitchell and John Quarterman, “Building Internet Firewalls,” UNIX World, February
1992

[5] Simson Garfinkel and Gene Spafford, “Practical UNIX Security,” O'Reilly and Associates, June
1991

[6] Dan Farmer, “COPS and Robbers, UN*X System Security,” Internet software. Available for FTP from
cert.sei.cmu.edu: /pub/cops

[7] Bill Cheswick, “An Evening with Berferd in which a cracker is Lured, Endured, and Studied,”
USENIX proceedings, Jan 20, 1990 Available for FTP from research.att.com:
/dist/internet_security/berferd.ps

[8] Marcus J. Ranum, “An Internet Firewall,” proceedings of World Conference on Systems
Management and Security, 1992 Available for FTP from tis.com: /pub/firewalls/dec-firewall.ps.Z

Trusted Information Systems, Inc. 14

